

Coimisiún na Scrúduithe Stáit State Examinations Commission

Leaving Certificate 2022

Marking Scheme

Physics

Higher Level

Note to teachers and students on the use of published marking schemes

Marking schemes published by the State Examinations Commission are not intended to be standalone documents. They are an essential resource for examiners who receive training in the correct interpretation and application of the scheme. This training involves, among other things, marking samples of student work and discussing the marks awarded, so as to clarify the correct application of the scheme. The work of examiners is subsequently monitored by Advising Examiners to ensure consistent and accurate application of the marking scheme. This process is overseen by the Chief Examiner, usually assisted by a Chief Advising Examiner. The Chief Examiner is the final authority regarding whether or not the marking scheme has been correctly applied to any piece of candidate work.

Marking schemes are working documents. While a draft marking scheme is prepared in advance of the examination, the scheme is not finalised until examiners have applied it to candidates' work and the feedback from all examiners has been collated and considered in light of the full range of responses of candidates, the overall level of difficulty of the examination and the need to maintain consistency in standards from year to year. This published document contains the finalised scheme, as it was applied to all candidates' work.

In the case of marking schemes that include model solutions or answers, it should be noted that these are not intended to be exhaustive. Variations and alternatives may also be acceptable. Examiners must consider all answers on their merits, and will have consulted with their Advising Examiners when in doubt.

Future Marking Schemes

Assumptions about future marking schemes on the basis of past schemes should be avoided. While the underlying assessment principles remain the same, the details of the marking of a particular type of question may change in the context of the contribution of that question to the overall examination in a given year. The Chief Examiner in any given year has the responsibility to determine how best to ensure the fair and accurate assessment of candidates' work and to ensure consistency in the standard of the assessment from year to year. Accordingly, aspects of the structure, detail and application of the marking scheme for a particular examination are subject to change from one year to the next without notice.

In considering this marking scheme the following points should be noted.

- 1. In many instances only key words are given words that must appear in the correct context in the candidate's answer in order to merit the assigned marks.
- 2. Words, expressions or statements separated by a solidus, /, are alternatives which are equally acceptable.
- 3. Answers that are separated by a double solidus, //, are answers which are mutually exclusive. A partial answer from one side of the // may not be taken in conjunction with a partial answer from the other side.
- **4.** The descriptions, methods and definitions in the scheme are not exhaustive and alternative valid answers are acceptable.
- 5. The detail required in any answer is determined by the context and manner in which the question is asked, and also by the number of marks assigned to the answer in the examination paper. Therefore, in any instance, it may vary from year to year.
- **6.** For omission of appropriate units (or for incorrect units) in final answers, one mark is deducted, unless otherwise indicated.
- 7. When drawing graphs, one mark is deducted for use of an inappropriate scale.
- **8.** Each time an arithmetical slip occurs in a calculation, one mark is deducted.
- **9.** A zero should only be recorded when the candidate has attempted the question but does not merit marks. If a candidate does not attempt a question (or part of) examiners should record NR.

Examiners are expected to annotate parts of the responses as directed at the marking conference. (See below.)

Symbol	Name	Use			
×	Cross	Incorrect element			
✓	Tick	Correct element (0 marks)			
✓ n	Tick _n	Correct element (n marks)			
~~~	Horizontal wavy line	To be noticed			
2	Vertical wavy line	Additional page			
-1	-1	-1			
	٨	Missing element			

11. Bonus marks at the rate of 10% of the marks obtained will be given to a candidate who answers entirely through Irish and who obtains 75% or less of the total mark available (i.e. 228 marks or less). In calculating the bonus to be applied decimals are always rounded down, not up – e.g., 4.5 becomes 4; 4.9 becomes 4, etc. See below for when a candidate is awarded more than 228 marks.

#### Marcanna Breise as ucht freagairt trí Ghaeilge

Léiríonn an tábla thíos an méid marcanna breise ba chóir a bhronnadh ar iarrthóirí a ghnóthaíonn níos mó ná 75% d'iomlán na marcanna.

N.B. Ba chóir marcanna de réir an ghnáthráta a bhronnadh ar iarrthóirí nach ngnóthaíonn níos mó ná 75% d'iomlán na marcanna don scrúdú. Ba chóir freisin an marc bónais sin **a shlánú síos**.

#### Tábla 304 @ 10%

Bain úsáid as an tábla seo i gcás na n-ábhar a bhfuil 304 marc san iomlán ag gabháil leo agus inarb é 10% gnáthráta an bhónais.

Bain úsáid as an ngnáthráta i gcás 228 marc agus faoina bhun sin. Os cionn an mharc sin, féach an tábla thíos.

Bunmharc	Marc Bónais
229 - 230	22
231 - 234	21
235 - 237	20
238 - 240	19
241 - 244	18
245 - 247	17
248 - 250	16
251 - 254	15
255 - 257	14
258 - 260	13
261 - 264	12
265 - 267	11

Bunmharc	Marc Bónais
268 - 270	10
271 - 274	9
275 - 277	8
278 - 280	7
281 - 284	6
285 - 287	5
288 - 290	4
291 - 294	3
295 - 297	2
298 - 300	1
301 - 304	0

- 1. A student used a metre stick to investigate the laws of equilibrium for a set of co-planar forces. He found that the weight of the metre stick was 1.2 N and that its centre of gravity was at the 50.6 cm position.
  - Describe how the student determined (a) the centre of gravity and (b) the weight of (i) the metre stick.

	( <i>a</i> ) suspended from a thread / b	palanced on a pivot	[3]
	(b) weighing scales / mass balan	nce × <i>g</i>	[3]
( <i>ii</i> )	Why was it necessary to determine	the centre of gravity of the metre stick?	
	to know where the weight acted /	to calculate the moment [state/imply]	[4]
He ti horiz	hen applied vertical forces to the me zontal and in equilibrium.	tre stick and adjusted them until the metre stick w	vas
(iii)	Indicate on a labelled diagram how	these vertical forces were applied to the metre st	ick.
	weights	[for downward forces]	[2]
	newtonmeters / weights and pulle	eys [for upward forces]	[2]
		[–1 if no label present on	diagram]
(iv)	How was it ensured that the metre	stick was in equilibrium?	
	not moving		[4]
(v)	What was the principal advantage of	of ensuring that the metre stick was horizontal?	
	distances read are perpendicular/o	correct / trigonometry not needed	[4]
The	following data were recorded		

The following data were recorded.

Position on metre stick	22.5 cm	32.1 cm	72.2 cm	81.3 cm	
Force (N)	ce (N) 2.85 2.00		3.00	3.40	
Direction	upwards	downwards	downwards	upwards	

(vi) Calculate the net moment about the 0 cm position. (2 × 0.321) + (1.2 × 0.506) + (3 × 0.722) = 3.4152 [N m] [3] (2.85 × 0.225) + (3.4 × 0.813) = 3.40545 [N m] [3] 3.4152 - 3.40545 = 0.00975 N m [3]

[-1 if incorrect fulcrum used]

[accept partial answer for 3, e.g. moment = force × distance, any moment calculated] (vii) Calculate the net vertical force acting on the metre stick. 2.85 + 3.4 - 2 - 3 - 1.2 = 0.05 N [upwards] [3]

(viii) Explain how these results verify the laws of equilibrium.

net moment ≈ 0	
net force ≈ 0	[4+2]

2. In an experiment to verify Boyle's law, a student measured the length l of a column of air of fixed mass and uniform diameter, at different values of air pressure *p*.

The following data were recorded.

<i>l</i> (cm)	15.0	20.0	25.0	30.0	35.0	40.0
<i>p</i> (kPa)	360	227	214	178	154	136

(i) State Boyle's law.

p is inversely proportional to V / pV = constant

#### for a fixed mass of gas at constant temperature

(*ii*) Draw a labelled diagram of how the apparatus was arranged in this experiment.

means of measuring p
means of measuring V or l
means of changing <i>p</i> or <i>V</i> or <i>l</i>

[-1 if no label present on diagram]

[4 + 2]

[3] [3] [3]

[3]

[3]

(iii) Why is it necessary for the column of air to have a uniform diameter?

#### so that V is proportional to *l* [state/imply]

Draw a suitable graph to verify Boyle's law. (iv)

#### values for 1/l or 1/p

		1	1	1				
	1// (cm ⁻¹ )	0.067	0.05	0.04	0.033	0.029	0.025	
	1/ <i>p</i> (kPa ⁻¹ )	0.0028	0.0044	0.0047	0.0056	0.0065	0.0074	
	labelled axes							
	correct points p	lotted						
	line of best fit							
(v)	Explain how you	ır graph veri	fies Boyle's l	law.				
	straight line through origin							
One	of the data points	s is inconsist	ent with the	other data	points.			
(vi)	Which of the da	ta points is i	nconsistent	with the oth	ners?			
	the second data	a point, i.e. v	when <i>l</i> = 20.	0 cm				
(vii)	How did you tre	at this data	point when	you drew yo	our graph?			
	ignored it		-	· ·	- •			
	-							

**3.** In an experiment to verify Snell's law, a student measured the angle of incidence *i* and the angle of refraction *r* for a ray of light as it passes from air into glass. This process was repeated for six different values of *i*.

The following data were recorded.

	i (degrees)	30	40	50	60	70	80
	r (degrees)	19	27	32	36	40	44
D	raw a labelled diagr	am of how	the appara	tus was arr	anged in th	nis experim	nent.
tr	ransparent block						
ra	ay box / laser / pins	6					
d	etail e.g. paper, rul	er, protract	tor				
					[—1 if	no label p	resent or
D	escribe how the stu	dent deterr	nined the a	angle of ref	raction.		
d	raw incident/emer	gent ray					
d	raw refracted ray						
d	raw normal [at poi	nt of incide	nce]				
m	neasure angle with	protractor					
D	raw a suitable grap	h to verify S	Snell's law.				
Vä	alues for sin <i>i</i> and si	n <i>r</i>					
	sin <i>i</i>	0.5	0.64	0.77	0.87	0.94	0.98
	sin <i>r</i>	0.33	0.45	0.53	0.59	0.64	0.69
la	abelled axes						
C	orrect points plotte	d					
li	ne of best fit						
U	lse your graph to ca	lculate the	refractive	index of th	e glass.		
sl	lope formula						
n	= 1.4						
W	Vhat would be obse	rved if the a	angle of ind	cidence wa	s zero deg	rees?	
n	o refraction / ray t	avels straig	ght throug	h			

4. In an experiment to determine the speed of sound in air a student measured the length l of a column of air when it was vibrating at its fundamental frequency f. This process was repeated for six different values of f.

The following data were recorded.

<i>f</i> (Hz)	256	288	320	341	384	480
<i>l</i> (cm)	29.2	25.5	22.6	20.9	18.1	13.7

(i) Draw a labelled diagram of how the apparatus was arranged in this experiment. tube means of changing length means of measuring length tuning fork[s]

#### [-1 if no label present on diagram]

[3] [3]

[3]

[3]

[3]

[3] [3] [3]

[3]

- (*ii*) How did the student determine the length of the column of air for a particular frequency? hold [vibrating] tuning fork over the mouth of the pipe change the length of the pipe until [the loudest] sound is heard measure length from closed end to open end of the pipe [any 2 × 3]
- Draw a graph to show the relationship between l and  $\frac{1}{r}$ . (iii) .. .. **~** 1 **~**•••

(Note: the line	e of best fit o	on your grap	h should <b>nc</b>	<b>ot</b> go throug	h the origin	.)
values for 1/f						
1/ <i>f</i> (Hz ^{−1} )	0.0039	0.0035	0.0031	0.0029	0.0026	0.0021
labelled axes			•	1	1	
correct points	plotted					
line of best fit						
Use your grap	h to calculat	e the speed	l of sound ir	n air.		
slope formula	1					

 $c = 4 \times 85 = 340 \text{ m s}^{-1}$ [3] Explain why the line of best fit on the graph does not go through the origin. (v) end correction term / wave exists above the opening of the pipe [4]

(iv)

5. A student performed a single experiment to (*a*) verify Joule's law, and (*b*) determine the specific heat capacity of olive oil.

An electrical heating coil of resistance 8.5  $\Omega$  was immersed in 350 g of olive oil which was at room temperature. A current *I* was allowed to flow through the coil for three minutes and the final temperature  $\theta$  of the oil was determined.

This process was repeated for six different values of *I*.

The following data were recorded.

Room temperature = 17.0 °C

<i>I</i> (A)	1.0	2.0	3.0	3.5	4.0	4.5
θ(°C)	19.2	26.1	36.6	44.4	53.1	62.1

(*i*) Draw a labelled diagram of how the apparatus was arranged in this experiment.

heating coil	[3]
power supply / battery	[3]
ammeter in series	[3]
thermometer	[3]
	[–1 if no label present on diagram]

(ii) How was the mass of the olive oil determined?

subtract mass of empty calorimeter from mass of full calorimeter / tare mass of empty	
calorimeter before adding oil	[3]

(*iii*) Draw a suitable graph to verify Joule's law.

#### values for $I^2$

(iv)

(v)

<i>I</i> ² (A ² )	1.0	4.0	9.0	12.25	16.0	20.25
Δ <i>θ</i> (K)	2.2	9.1	19.6	27.4	36.1	45.1
labelled axes			L			1
correct points	plotted					
line of best fit						
Calculate the s	slope of you	r graph.				
slope formula						
n = 0.447 [no	units requi	red]				
Hence calcula [.]	te the specif	ic heat capa	acity of olive	e oil.		
nc∆θ / I²Rt						
(0.447)(8.5)(1	<b>30)/0.35 = 1</b>	954 J kg ⁻¹ K	-1			

[3]

- 6. Answer any **eight** of the following parts, (*a*), (*b*), (*c*), etc.
  - (a) Iron has a density of 7.87 g cm⁻³. An iron sphere has a mass of 500 g. Calculate the radius of the sphere in cm.

	•		
	$\rho = m/V  or V = (4/3)\pi r^3$		[3]
	<i>V</i> = 500/7.87 = 63.53 [cm ³ ]		[2]
	<i>r</i> = 2.475 [cm]		[2]
(b)	Calculate how many electronvolts	are in a kilowatt-hour.	
	1 eV = 1.6 × 10 ⁻¹⁹ [J]	1 kW-hour = 1000(60)(60) = 3.6 × 10 ⁶ [J]	[3 + 2]
	$3.6 \times 10^{6}/1.6 \times 10^{-19} = 2.25 \times 10^{25}$		[2]
( <i>c</i> )	Draw a labelled diagram to show t	he forces acting on a piece of wood floating at res	t.
	weight labelled [downwards]	buoyancy/upthrust labelled [upwards]	[3 + 2]
	equal and opposite force vectors		[2]
(d)	State the thermometric property of	of (i) a thermocouple, (ii) a mercury thermometer.	
	(i) voltage/emf	(ii) height/length/volume	[4 + 3]
(e)	Transverse waves can be polarised	<ol> <li>Explain what is meant by polarisation.</li> </ol>	
	oscillations/vibrations		
	in one plane		[4 + 3]
(f)	The sound intensity is 0.18 mW m ⁻ sound. Calculate the power of the	-2 at a distance of 3 m in any direction from a sour e source.	ce of
	P = IA		[3]
	A = 4π(3²) = 113.1 [m²]		[2]
	<i>P</i> = 0.02 W		[2]

(g)	Describe how an insulated metal sphere can be charged by induction using a nearby charged rod.		
	earth sphere [when rod is close]	[3]	
	de-earth sphere [while rod is close]	[2]	
	then remove rod	[2]	
	[–2 for each additional incorr	ect step]	
( <i>h</i> )	A current-carrying wire of length 20 cm is placed in a magnetic field. When a current 55 mA flows in the wire the maximum force it can experience is 130 $\mu$ N. Calculate the magnetic flux density of the field.	t of าe	
	F = BIl	[4]	
	<i>B</i> = 0.00013/(0.2 × 0.055) = 0.0118 T	[3]	
( <i>i</i> )	A tungsten cube of side 2 cm has a resistance of 2.8 $\mu\Omega$ . Calculate the resistivity of t	ungsten.	
	$\rho = RA/l$	[4]	
	ρ = 0.0000028 × 0.02 = 5.6 × 10 ⁻⁸ Ω m	[3]	
(j)	Describe how the Bohr model of the atom explains emission line spectra.		
	[electron] falling from one energy level to another / $E_2 - E_1 / \Delta E$		
	produces light of a [particular] frequency/wavelength/energy/colour/hf	[4 + 3]	
( <i>k</i> )	What is thermionic emission? Where does it occur in an X-ray tube?		
	emission of electrons	[2]	
	from a hot surface	[2]	
	cathode	[3]	
(/)	Pair annihilation of an electron and a positron occurs in a positron emission tomogra (PET) scanner. Write an equation for this annihilation.	phy	
	$e^{-} + e^{+} / 2m_{e}c^{2}$		
	$= 2\gamma / 2hf$	[4 + 3]	

or

Draw the symbol for an AND gate. Write out the truth table for an AND gate.

$$\begin{array}{c|c} & & & \\ \hline & & & \\ \hline & & & \\ \hline 0 & 0 & & \\ \hline 1 & 0 & 0 & \\ \hline 0 & 1 & 0 & \\ \hline 1 & 1 & 1 & \\ \end{array}$$
[3]

- 7. A spring of natural length 150 mm obeys Hooke's law. When an object of mass 200 g is attached to it, the length of the spring increases to 185 mm.
  - (i) State Hooke's law.

extension	// F = -kx	[2]
	<i>11</i>	[0]

proportional to force	// notation	[2]

(*ii*) Calculate the elastic constant of the spring.

F = -kx	[2]
(0.2)(9.8) = k(0.185 - 0.15)	[2]
<i>k</i> = 56 N m ⁻¹	[2]

The object is pulled down until the spring has a length of 200 mm. The object is then released. It moves with simple harmonic motion.

(iii) Calculate the period of oscillation of the object.

	$T = 2\pi/\omega$	[3]
	$\omega = \sqrt{k/m} \text{ or } \omega = \sqrt{280} = 16.73 \text{ [s}^{-1}\text{]}$	[3]
	$T = 2\pi/16.73 = 0.375$ s	[3]
(iv)	Calculate the maximum acceleration of the object.	
	$\alpha = -\omega^2 x$	[3]
	<i>a_{max.}</i> = (280)(0.2 – 0.185) = 4.2 m s ⁻²	[3]
(v)	What is the speed of the body when it has maximum acceleration?	
	zero	[3]
The c 11 cr of 0.5	object is now detached from the spring and attached to the end of a string of fixed length n. It is made to rotate in a vertical circle with constant angular velocity and with a period 5 s.	
( <i>vi</i> )	Derive an expression for the linear velocity of an object moving in circular motion in terms its angular velocity and the radius of the circle.	s of
	$\theta = s/r$	[3]
	$v = s/t = r\theta/t$	[3]
	$\omega = \theta/t$ so $v = r\omega$	[3]
	[accept v = $r\omega$ as partial answer fo	r 3]
(vii)	Calculate (a) the angular velocity, (b) the linear velocity of the object.	
	(a) $T = 2\pi/\omega$	[3]
	$\omega = 2\pi/0.5 = 12.57 \text{ rad s}^{-1}$	[3]
	(b) $v = 0.11 \times 12.57 = 1.38 \text{ m s}^{-1}$	[3]
(viii)	Calculate the minimum tension in the string.	
	$F_c = mr\omega^2 / F_c = mv^2 / r$	[3]
	$T_{min.} = (0.2 \times 0.11 \times 12.56^2) - (0.2 \times 9.8) = 3.47 - 1.96 = 1.51 \text{ N}$	[3]
( <i>ix</i> )	Draw a labelled diagram of the forces acting on the object when the string has its minimum tension.	
	weight acting downwards	[2]
	tension acting downwards	[2]
	[-2 for each additional incorrect force; ignore references to centripetal for	rce]
	[-1 if no label present on diagra	am]

Leaving Certificate, 2022 Physics – Higher Level

- 8. Semiconductors are essential in many electrical devices.
  - Distinguish between conductors, insulators and semiconductors. (i) conductors are good at allowing current to flow / high conductivity / low resistivity insulators are poor at allowing current to flow / low conductivity / high resistivity semiconductors are in-between

Semiconductors can be converted into p-type semiconductors and n-type semiconductors by doping.

A p-n junction is used in a diode.

	n-type doping introduces [excess] electrons / e.g. adding P	[3]
	p-type doping introduces [excess] holes / e.g. adding B	[3]
(iii)	How does p-type doping differ from n-type doping?	
	to increase conductivity / to decrease resistivity	[3]
	addition of [a small amount of] impurity	[3]
( <i>ii</i> )	What is meant by doping?	

A depletion layer exists in a p-n junction.

(*iv*) Describe a depletion layer and explain how it forms.

insulating region / region with no free charge carriers	[3]
between p-type and n-type semiconductors	[3]
holes/electrons migrate	[3]
and combine/neutralise each other	[3]

(v) Indicate on a diagram the sections of a p-n junction that are positively charged, negatively charged and neutral.

negatively charged in p-type close to the interface positively charged in n-type close to the interface neutral in remainder

Associated with every diode is a voltage called its junction voltage.	Wł	hen a var	iable voltage is	5
applied across a diode held in forward bias, the depletion layer bre	eaks	down as	the junction	
voltage is reached.				

(vi) Draw a circuit diagram to show this arrangement.

	diode in forward bias			[3]
	[variable] voltage source			[3]
(vii)	Sketch a graph to show the va the junction voltage on your g	riation of raph.	current with voltage for this arrange	ment. Indicate
	axes labelled	I	i i	[3]
	correct shape	•		[3]

junction voltage indicated

- [3] v (viii) In many electric circuits a resistor is placed in series with a diode. Explain why this may be
  - necessary. to protect the diode / to limit the current / to prevent overheating [5]

neutral

neutral

[2]

[2]

[2]

[2]

[2]

[2]

**9.** (a) A metal sphere of diameter 5 cm holds a charge of  $-6 \mu$ C.

• •			<b>o</b> 1		
	( <i>i</i> )	Drav	v the electric field around the sphere.		
		radia	al shape of field		[3]
		dire	ction of field towards centre		[3]
	( <i>ii</i> )	Calc	ulate the electric field strength at a distance of 3 cm	from the surface of	
			$a_{\rm r}/4\pi cd^2$		[2]
		r - 4	142747120 1 A		[2]
		E - r E - 1	/4 6 × 10 ⁻⁶ )///# × 8 85/ × 10 ⁻¹² × 0 055 ² ) - 1 78 × 10 ⁷ N	ı <b>∩</b> -1	[2]
(h)	۸ de	L - (	$0 \times 10^{-1}$ (4.0 $\times 0.004 \times 10^{-1}$ $\times 0.005^{-1}$ ) = 1.70 $\times 10^{-1}$	fic charge is called a capacit.	[ <b>J</b> ]
(D)			rat is designed to store energy when it holds a speci	ne charge is called a capacity	Jr.
	(1)	Desc	nde an experiment to demonstrate that a charged t	apacitor stores energy.	[4]
		met	nod to charge capacitor e.g. across battery		[4]
		met	hod to discharge capacitor e.g. across bulb/buzzer		[4]
		obse	ervation		[4]
	A pa over	rallel- lap A.	plate capacitor has a dielectric of permittivity $\varepsilon$ and Voltage V is applied across the plates such that the	its plates have an area of capacitor stores energy W.	
	( <i>ii</i> )	In te each	rms of some or all of the symbols given, write an explate of the capacitor, (b) the distance between the	pression for ( <i>a</i> ) the charge o e plates.	n
		(a)	2W/V		[4]
		(b)	εAV²/2W		[4]
(c)	(i)	Deri	ve an expression for the effective resistance of two	resistors in parallel.	
		<i>I</i> _T = <i>Ι</i>	$I_1 + I_2$		[3]
		<b>V/R</b> 1	$= V/R_1 + V/R_2$		[3]
		1/ <i>R</i> _T	$= 1/R_1 + 1/R_2$		[3]
	Thre	e resi	stors X, Y and Z are arranged in a circuit as shown be	low.	
			( <i>ii</i> )	Calculate the current flow	ing
		12	V	( <i>a</i> ) in resistor X,	-

(b) in resistor Y.

- (a)  $R_{YZ} = 1/(\frac{1}{6} + \frac{1}{3}) = 2 [\Omega]$  [3]
  - $R_{XYZ} = 1 + 2 = 3 [\Omega]$  [3]
    - I = 12/3 = 4 [3]

(b) 
$$(4)(1/3) = 1.33$$
 A [3]



- **10.** Americium–241, a radioactive substance, is the key component of smoke detectors, where its ionising ability is used to help detect smoke particles. It is produced from plutonium–239 in nuclear reactors.
  - (*i*) What is meant by (*a*) radioactivity, (*b*) ionisation?

	(a)	[spontaneous] emission of [one or more types of] radiation	[3]
		from a nucleus	[3]
		[-1 for "atom" instead of "nucl	eus"]
	(b)	removing/adding electron(s) from/to an atom / charging a particle	[3]
A nuo pluto	cleus niun	of plutonium–239 can absorb two neutrons to produce plutonium–241. This isotop n then undergoes beta decay to produce americium–241.	e of
( <i>ii</i> )	Wri	te a nuclear equation for the conversion of plutonium-239 into plutonium-241.	
	²³⁹ 94	$Pu + 2_0^1 n \to \frac{241}{94} Pu$ [(5 × 1	) + 1]
		[-3 for each additional incorrect spe	ecies]
(iii)	Wri	te a nuclear equation for the conversion of plutonium-241 into americium-241.	
	²⁴¹ 94	$Pu \to {}^{241}_{95}Am + {}^{0}_{-1}e$ [	7 × 1]
		[–3 for each additional incorrect spe	ecies]
At pr	esen	t, nuclear reactors are fission reactors. Nuclear fusion reactors are not yet viable.	
(iv)	Out	line the differences between nuclear fission and nuclear fusion.	
	fissi	on is splitting of a nucleus	[3]
	fusi	on is joining of [two] nuclei	[3]
		[–1 for "atom" instead of "nucleus" (o	nce)]
Fissic	on re	actors usually contain moderators.	
(v)	Wha	at is the function of a moderator?	
	slov	vs down neutrons / increases the rate of fission	[4]
(vi)	Stat	e one example of a moderator.	
	wat	er / graphite / beryllium	[4]
(vii)	Wh	y are nuclear fusion reactors not yet viable?	
	too	much energy needed [to overcome electrostatic repulsion between nuclei] /	
	scar	rcity of tritium	[3]
Ame 241 و	riciur g of a	n–241 undergoes alpha decay in a smoke detector. It has a half-life of 432 years. mericium–241 contains 6.0 × 10 ²³ nuclei.	
A typ	ical s	smoke detector contains 0.29 μg of americium–241.	
(viii)	Wh	y are the alpha particles produced in the detector not considered a health hazard?	
	easi	ily stopped / not very penetrating / short range	[3]
( <i>ix</i> )	Calc	culate the decay constant for americium–241.	
	T½ =	: (In 2)/λ	[3]
	λ = (	$0.693/(432 \times 365 \times 24 \times 60 \times 60) = 5.09 \times 10^{-11} \text{ s}^{-1}$	[3]
(x)	Calc	culate the activity of the americium in the smoke detector.	
	<b>A</b> = .	λΝ	[3]
	0.29	) μg has (0.29 × 10 ⁻⁶ /241)(6.0 × 10 ²³ ) = 7.22 × 10 ¹⁴ [nuclei]	[3]
	(5.0	9 × 10 ⁻¹¹ ) × (7.22 × 10 ¹⁴ ) = 3.67 × 10 ⁴ Bq [or s ⁻¹ ]	[2]

**11.** The Bronze Age began about 5000 years ago. Archaeologists use physics to help them understand the culture and technology of the Bronze Age.

During the Bronze Age in Ireland, a *fulacht fiadh* was used to heat water, perhaps to cook food. It contained an open pit which was filled with water. Stones were heated in a fire and the hot stones were placed into the water.

A particular *fulacht fiadh* contained 750 litres of water at an initial temperature of 4 °C. 50 stones were taken from the fire, at a temperature of 280 °C, and placed into the water. The stones had an average heat capacity of 8.5 kJ K⁻¹ each.

- (i) What is meant by (a) heat capacity, (b) specific heat capacity?
  - (a) energy to change the temperature of an object by 1 K //  $E/\Delta\theta$  [3]
  - (b) energy to change the temperature of 1 kg of a material by 1 K [6 + 3] //  $E/m\Delta\theta$  [3]

// notation [3]

[6 + 3 + 3]

[3]

(*ii*) Calculate the highest temperature the water could have reached.

```
mc\Delta\theta
(750)(4180)(x - 4) <u>or</u> (50)(8500)(280 - x)
x = 36.95 °C
```

(*iii*) Suggest a way of improving the design of the *fulacht fiadh* to make it more efficient.

#### e.g. lid, fire closer to the water etc.

The earliest harps and lyres were produced in the Bronze Age. Different strings in a lyre may have different lengths, different tensions and different diameters.

(*iv*) Draw a labelled diagram to represent a stretched string vibrating at its third harmonic.

#### node at both ends

#### three anti-nodes

A 65 cm string of mass 0.21 g is stretched between two points of a lyre which are 34.1 cm apart. It is required to vibrate at a fundamental frequency of 440 Hz.

(v) Calculate the tension that is applied to the string.

# $f = (1/2l) \sqrt{T/\mu}$ $\mu = m/l [= 0.00021/0.65 = 0.000323 \text{ kg m}^{-1}]$ T = 29.1 N

(vi) Determine the frequency of the string if the tension is now reduced by a factor of four.220 Hz

#### [accept partial answer for 2, e.g. any use of factor of two]

Archaeologists often use radiocarbon dating to estimate the age of wooden objects. They do this by measuring the ratio of carbon–14 to carbon–12 in a sample and comparing it to this ratio for the carbon in a living tree.

(vii) C-14 and C-12 are both isotopes of carbon. What are isotopes?

	atoms with the same number of protons / atoms with the same atomic number / atoms	5
	of the same element	[3]
	with different number of neutrons / with different mass number	[3]
(viii)	The ratio of C–14 to C–12 in a sample from an archaeological artefact is found to be one quarter the ratio found in a living tree. Is the artefact from the Bronze Age? Justify your answer.	
	no	[2]
	two half-lives [> time since the beginning of the Bronze Age]	[2]
Leavir	ng Certificate, 2022	

### [6 + 3 + 3]

[4 + 2]

[4]

- **12.** Answer **either** part (*a*) or part (*b*).
- (*a*) In 1932 Ernest Walton and John Cockcroft verified experimentally Einstein's equation that relates mass and energy. They accelerated protons through a potential difference of 70 kV before allowing them to collide with lithium metal.

(i)	Drav	v a labelled diagram of their apparatus.	
	hydr	ogen discharge tube	[3]
	linea	ar accelerator with voltage applied correctly	[3]
	targe	et [at 45°]	[3]
	scree	en/scintillations/microscope	[3]
(ii)	Writ	e a nuclear equation for the interaction between a proton and a nucleus of lithiur	m—7.
	⁷ ₃ Li -	$+ \frac{1}{1}p \rightarrow 2\frac{4}{2}He$	[9 × 1]
	-	[-3 for each additional incorrect	species]
The	mass o	of the ¹ H nuclide is given on page 83 of the <i>Formulae and Tables</i> booklet as 1.007	825 u.
(iii)	Conv	vert this mass to kg. (Give your answer to six decimal places.)	
	(1.00	)7825)(1.6605402 × 10 ⁻²⁷ ) = 1.673534 × 10 ⁻²⁷ [kg]	[3]
(iv)	Expla mass	ain the discrepancy between the value you have calculated and the value given fo s of the proton on page 47 of the <i>Formulae and Tables</i> booklet.	or the
	the r	nuclide mass [on page 83] contains the mass of the electron	[3]
Calc	ulate		
	(v)	the kinetic energy of the proton as it collided with the metal,	
		E = qV	[3]
		(1.60217653 × 10 ⁻¹⁹ )(70000) = 1.12152357 × 10 ⁻¹⁴ J	[3]
	(vi)	the mass lost (in kg) during the interaction,	
		7.016005 + 1.007825 – 2(4.002603) = 0.018624 [u]	[3]
		$(0.018624)(1.6605402 \times 10^{-27}) = 3.09259007 \times 10^{-29} \text{ [kg]}$	[3]
	(vii)	the energy produced (in J) during the interaction,	
		$E = mc^2$	[3]
		$(3.09259007 \times 10^{-29})(2.99792458 \times 10^8)^2 = 2.77948134 \times 10^{-12}$ [J]	[3]
	(viii)	the speed of the alpha particles formed during the interaction.	
		$E = \frac{1}{2}mv^2$	[3]
		<i>v</i> = 2.05 × 10 ⁷ m s ⁻¹	[3]
( <i>ix</i> )	A pro	oton may be classified as a hadron. Explain why.	
	it ex	periences the strong force / it is composed of quarks	[3]
(x)	A pro	oton may also be classified as a <i>baryon</i> . Explain why.	
	bary	ons are composed of three quarks	[2]

(b)	A mo	oving-coil galvanometer is a de	vice for detecting and measuring electric current.			
	( <i>i</i> )	What is electric current?				
		the flow of charge		[3]		
	( <i>ii</i> )	Draw a labelled diagram of a	moving-coil galvanometer.			
		magnet		[3]		
		coil		[3]		
		[soft] iron core		[3]		
		scale and pointer		[3]		
			[–1 if no label present on diagr	ˈam]		
	(iii)	Describe, with the aid of you galvanometer.	r diagram, the principle of operation of a moving-coil			
		current in coil		[3]		
		force/torque		[3]		
		deflection of pointer		[3]		
	(iv)	Draw a circuit diagram to der ammeter.	nonstrate how a galvanometer can be converted into an			
		[low resistance] resistor/shu	int	[3]		
		in parallel with galvanomete	r	[3]		
	( <i>v</i> )	Draw a circuit diagram to der ohmmeter.	nonstrate how a galvanometer can be converted into an			
		variable resistor in series wit	th galvanometer	[3]		
		power supply		[3]		
	A res	sistor called a multiplier is used	t to convert a galvanometer into a voltmeter.			
	(vi)	A galvanometer has a full sca Calculate the resistance of th into a voltmeter which can re	le deflection of 50 mA and a resistance of 0.7 Ω. Ie multiplier used when this galvanometer is converted ead up to 10 V.			
		V = IR		[3]		
		10 ÷ 0.05 = 200 [Ω]	// 10 – (0.05 × 0.7) = 9.965 [V]	[3]		
		200 – 0.7 = 199.3 Ω	// 9.965 ÷ 0.05 = 199.3 Ω	[3]		
	Α Ιοι	A loudspeaker also contains a moving coil.				
	(vii)	Explain, with the aid of a labe	elled diagram, how a loudspeaker produces sound.			
		current in the coil		[3]		
		creates a magnetic field		[3]		
		force produced from the inte	eraction between the two magnetic fields	[3]		
		cone vibrates [to produce so	ound]	[2]		
			[–1 if no label present on diagr	ˈam]		

13.	( <i>i</i> )	Diff	raction is one of the wave properties of light. What is meant by diffract	ion?		
		spre	ading [of a wave]			
		arou	und an obstacle / through a gap	[4 + 3]		
	( <i>ii</i> )	(a)	Draw a labelled diagram of an experiment to demonstrate the wave n	ature of light.		
			light source	[2]		
			diffraction grating	[2]		
			screen/spectrometer	[2]		
			[–1 if no label pre	esent on diagram]		
		(b)	What is observed in this experiment?			
			series of fringes	[4]		
		( <i>c</i> )	How do the observations demonstrate the wave nature of light?			
			interference	[4]		
	(iii)	The virtu	eyepiece lens of Huygens' telescope was a converging lens arranged so Jal image. Draw a ray diagram to show how a converging lens can prod	as to produce a uce a virtual		
		ima	ge.			
		con	verging lens	[2]		
		object inside focal point [2]				
		apparent intersection of rays to form virtual image [3]				
	(iv)	The pendulum of Huygens' clock oscillated with a period of 2 s. Calculate the length of this pendulum.				
		<b>T</b> = 2	2πV( <i>l/g</i> )	[4]		
		<i>l</i> = 0.993 m [3]				
	Titar Satu	tan orbits Saturn every 15.9 Earth days. The surface of Titan is 1.16 × 10 ⁹ m above the surface of Iturn.				
	(v)	Calc	ulate			
		(a)	the mass of Saturn,			
			$T^2 = 4\pi^2 R^3/GM$			
			<i>R</i> = 1.16 × 10 ⁹ + 58200000 + 2570000 = 1.22 × 10 ⁹ [m] <u>or</u> <i>T</i> = 15.9 × 24 × 60 × 60 = 1373760 [s]			
			$M = 4\pi^2 (1.22 \times 10^9)^3 / (6.6742 \times 10^{-11} \times 1373760^2) = 5.7 \times 10^{26} \text{ kg}$	[6 + 3 + 3]		
		(b)	the acceleration due to gravity on the surface of Saturn,			
			$g = GM/d^2$	[3]		
			<i>g</i> = (6.6742 × 10 ⁻¹¹ × 5.7 × 10 ²⁶ )/(58200000) ² = 11.2 m s ⁻²	[3]		
		( <i>c</i> )	the period that Huygens' clock would have on the surface of Saturn.			
			<i>T</i> = 2πν(0.993/11.2) = 1.87 s	[3]		

**14**. Answer any **two** of the following parts, (*a*), (*b*), (*c*), (*d*).

(a)	( <i>i</i> )	Distinguish between a vector and scalar.	
		vector has [magnitude and] direction	[2]
		scalar has magnitude only / scalar has no direction	[2]
	( <i>ii</i> )	Draw a labelled diagram of the arrangement of the apparatus in an experiment the resultant of two vectors.	t to find
		three newtonmeters / three systems of weights and pulleys / three displacer	nents [3]
		correct arrangement	[3]
	An c	bject is released with an initial velocity of 150 m s $^{-1}$ at an angle of 20° to the hor	izontal.
	(iii)	Resolve the velocity into horizontal and vertical components.	
		<i>v_H</i> = 150cos20° [= 141 m s ⁻¹ ]	[3]
		v _V = 150sin20° [= 51.3 m s ⁻¹ ]	[3]
	(iv)	Calculate the magnitude and direction of the velocity of the object after 8 s.	
		<i>v_H</i> = 150cos20° [= 141 m s ⁻¹ ]	[4]
		$v = u + \alpha t / v_V = 51.3 - (9.8 \times 8) = -27.1 \text{ [m s}^{-1}\text{]}$	[4]
		<i>v</i>   = 143.5 m s ⁻¹	[2]
		10.9° [below the horizontal]	[2]
(b)	( <i>i</i> )	What is the Doppler effect?	
		[apparent] change in frequency [of a wave]	[3]
		due to the [relative] motion between the source and the observer	[3]
	( <i>ii</i> )	Describe, with the aid of labelled diagrams, how the Doppler effect occurs.	
		concentric/non-concentric circles drawn [representing wavefronts]	[3]
		motion of wave source towards/away from observer	[3]
		shorter wavelength as source approaches observer [or vice versa]	[2]
		therefore greater frequency [or vice versa]	[2]
	Pier	re drops a child's toy which emits sound of fixed frequency 500 Hz from the top	of the

Eiffel tower.

(*iii*) Calculate the frequency Pierre observes after 3 seconds.

$$v = u + at [= (9.8)(3) = 29.4 \text{ m s}^{-1}]$$
  
 $f' = fc/(c \pm u)$   
 $f' = 460.2 \text{ Hz}$  [6 + 3 + 3]

- (c) The explanation of the photoelectric effect by Albert Einstein led to the quantum revolution in physics.
  - (i) Describe a laboratory experiment to demonstrate the photoelectric effect.
    - apparatus [e.g. gold leaf electroscope, metal plate, light source] [3] method [e.g. charge electroscope, place plate on cap, shine light on plate] [3] observation [e.g. leaves collapse] [3]

Light of wavelength 450 nm is incident on a metal that has a work function of 2.4 eV.

Calculate the maximum speed of the emitted electrons. *(ii)* 

 $hf = \Phi + \frac{1}{2}mv^2$  $c = f\lambda \text{ or } f = (3 \times 10^8)/(450 \times 10^{-9}) = 6.67 \times 10^{14} \text{ [Hz]}$  $\Phi = (2.4)(1.6 \times 10^{-19}) = 3.84 \times 10^{-19}$  [J] v = 3.56 ×10⁵ m s^{−1} [6+3+3+3]

It is observed that as the wavelength of the incident light increases, the speed of the emitted electrons decreases and eventually no electrons are emitted.

(iii) Explain these observations.

incident energy decreases	[2]
until the incident energy is below the work function / until the incident frequency	
is below the threshold frequency	[2]

(d) State the laws of electromagnetic induction. (i) induced emf  $// E = d\phi/dt$ proportional to rate of change of flux // notation direction of induced current/emf is such as to oppose the change that caused it A strong magnet is suspended from the end of a string and oscillates in a plane with a constant amplitude. *(ii)* Describe what is observed when a sheet of copper metal is placed under the oscillating magnet. Explain this observation.

	amplitude of oscillations decreases	[4]
	[magnetic field from induced] currents in copper	[4]
(iii)	Describe what would be observed if instead of the copper, a sheet of plastic was placed under the oscillating magnet. Explain this observation.	
	oscillations continue	[4]
	no currents flow in plastic	[4]

[3]

[3]

[3]

[3]